ریاضی در زندگی

ریاضی شیرین تر می شود

ریاضی در زندگی

ریاضی شیرین تر می شود

طبقه بندی موضوعی
پیوندهای روزانه

دنباله فیبوناتچی

سه شنبه, ۳۱ فروردين ۱۳۹۵، ۰۷:۵۱ ق.ظ
لئوناردو فیبوناچی ایتالیایی حدود سال 1200 میلادی مساله ای طرح کرد : فرض کنید که یک جفت خرگوش نر و ماده در پایان هر ماه یک جفت خرگوش نر و ماده جدید بدنیا بیاورند ... اگر هیچ خرگوشی از بین نرود , در پایان یک سال چند جفت خرگوش وجود دارد؟؟؟فیبوناچی تصمیم گرفت برای محاسبه تعداد انها Fn را تعداد جفتها در شروع ماه N ام فرض کند. پس F1 =1 و F2 =2 خواهد بود ... چون در شروع ماه اول فقط یک جفت اصلی وجود دارد...اما با شروع ماه دوم جفت اول جفت دوم را درست میکند.سپس او متوجه شد که با شروع ماه N ام جفتها به دو گروه تقسیم میشوند: Fn-1 تعداد جفتهای قدیمی و تعداد جفتهای جدید پس از N-1 ماه است .چون جفت جدید پس از یک ماه تولید میشود و بعد از یک ماه دیگر اولین جفت خود را تولید میکند ... تعداد جفتهای جدید برابر تعداد جفتهای دو ماه قبل است که با Fn-1 نشان داده میشود .پس :Fn= Fn-1 + Fn-2با استفاده از این فورمول و مقادیر اولیه F1 =1 و F2 =2 میتوان تعداد جفتها را پس از یک سال بدست اورد و نوشت F12=233 .سری اعداد Fn را دنباله فیبوناچی مینامند. با یک توافق عمومی مقادیر اولیه از 1 و 1 بجای 1و 2 شروع میشود (بطوری که جمله های دنباله بصورت زیر نوشته میشوند)... ,1,1,2,3,5,8,13,21,34,55,89,144,233حالا اگر در این دنباله هر عدد را به عدد قبلیش تقسیم کنیم یک همچین سری را خواهیم داشت:1/1 = 1, 2/1 = 2, 3/2 = 1?5, 5/3 = 1?666... 8/5 = 1?6, 13/8 = 1?625, 21/13 = 1?61538 و ...که هرچه جلو بریم بنظر می اید که به یک عدد مخصوص میرسیم . برای بهتر دیدن موضوع به نمودار زیر توجه کنید:ما این عدد را عدد طلایی مینامیم که این عدد تقریبا برابر است با : ... 1.618033به عبارتی دیگر حد این دنباله به عدد طلایی میرسد:سری فیبوناچی در طبیعت:حالا میام و به این دنباله به صورت دیگری نگاه میکنیم : اگر ما دو مربع به ضلع یک در کنار هم بگزاریم و در بالا اندو یک مربع با ضلع 2 بگزاریم و همین طوری تا اخر ... ما شکلی خواهیم داشت مثل شکل پایین :این مستطیل به مستطیل فیبوناچی معروف است.حالا اگر نقاطی از این شکل را به هم وصل کنیم به شکل زیر میرسیم :که شبیه این شکل را میتوان در طبیعت و در شکل زیر دید:از دیگر مثالهای این دنباله در طبیعت میتوان به دانه های گل افتابگردن یا به تعداد گلبرگ بعضی گلها اشاره کردعدد طلاییقبلا در مورد چگونگی بدست اوردن عدد طلایی از طریق دنباله فیبوناچی صحبت شد.حالا در مورد راههای دیگر بدست اوردن این عدد صحبت میکنیم ...در زمانهای قدیم هنرمندان یونانی به خوبی ریاضی دانان مستطیل زیبایی می شناختند که از نظر هنری عرض 1 و طول X داشت در این مستطیل هر وقت مربعی به ضلع 1 را از ان جدا کنند باز همان مستطیل با همان نسبتهای مستطیل اصلی باقی میماند .چون مستطیل جدید عرض 1-X و طول 1 دارد و چون نسبت ضعلهای دو مستطیل با هم برابر است :حالا اگر در معادله ی بالا برای X حل کنیم ریشه ی مثبت معادله همان عدد طلایی است:در دنیای ریاضی این عدد را با نشانه یونانی (خوانده میشود فی ) نمایش میدهند ...استفاده های این عدد:هرم " ریم پاپیروس " در اهرام ثلاثه یکی از قدیمی ترین مثالها از استفاده از این عدد در ساخت بناهاست ...اگر عرض یکی از شالهای این هرم را بر فاصله نوک هرم تا نقطه وسط کف هرم تقسیم کنیم جواب 1.6 خواهد بود ...باستان شناسان مطمئن نیستند که ایا این کار از قصد انجام شده یا اتفاقی بوده است !مطلب جالب دیگر این است که اگر قطر این هرم را به دوبرابر ارتفاع ان تقسیم کنیم جواب عدد پی (3.14) خواهد بود .مثال دیگر در بنای پارتنون در یونان وجود دارد .برای ساخت این بنا که در 440 BC ساخته شده است از مستطیل طلایی استفاده شده است:در شکل زیر نقشه این بنا را میتوانید ببینید ... امتحان کنید ببینید وقتی طول هر کدام از مستطیلهای در شکل را به عرض ان تقسیم میکنید عدد طلایی بدست می اید؟؟؟چگونگی کشیدن یک مستطیل طلایی:برای کشیدن یک مستطیل طلایی ابتدا بک مربع با ضلع دلخواه کشیده سپس طبق شکل زیر وسط ضلع پایین این مربع را پیدا کنید.بعد از این با یک پرگار یک قوس با شعاعی به اندازه وسط مربع تا گوشه سمت راست بکشید تا طول مستطیل معلوم شود.از استفاده های دیگر این عدد :- هر گاه شما طول صورت فردی را به عرض ان تقسیم کنید هر چقدر این عدد به عدد طلایی نزدیکتر باشد ان فرد باهوشتر است.(این ثابت نشده است ...- طول هرسه بند انگشت یکی از انگشتان خود را به دلخواه اندازه بگیرید. اندازه بند بالایی را به وسطی تقسیم کنید. عددی در حدود 1.6 خواهد بود نه ؟!حال همان عمل بالا (تعیین نسبت) را در مورد بند وسط به بند کوچک انجام دهید. جواب ؟در ریاضیات سری فیبوناچی به دنباله‌ای از اعداد گفته می‌شود که بصورت زیر تعریف می‌شود: 1. \\ \end{cases} " src="https://upload.wikimedia.org/math/4/7/0/470072226d1629b5b6b973f1881b2051.png" data-mce-src="https://upload.wikimedia.org/math/4/7/0/470072226d1629b5b6b973f1881b2051.png">غیر از دو عدد اول اعداد بعدی از جمع دو عدد قبلی خود بدست می‌آید. اولین اعداد این سری عبارت‌اند از:۰٬ ۱٬ ۱٬ ۲٬ ۳٬ ۵٬ ۸٬ ۱۳٬ ۲۱٬ ۳۴٬ ۵۵٬ ۸۹٬ ۱۴۴٬ ۲۳۳٬ ۳۷۷٬ ۶۱۰٬ ۹۸۷٬ ۱۵۹۷٬ ۲۵۸۴٬ ۴۱۸۱٬ ۶۷۶۵٬ ۱۰۹۴۶٬ ۱۷۷۱۱این اعداد به نام لئوناردو فیبوناچی ریاضیدان ایتالیایی نام گذاری شده‌استدر دوران حیات فیبوناچی مسابقات ریاضی در اروپا بسیار مرسوم بود در یکی از همین مسابقات که در سال ۱۲۲۵ در شهر پیزا توسط امپراتور فردریک دوم برگزار شده بود مسئله زیر مطرح شد:«فرض کنیم خرگوش‌هایی وجود دارند که هر جفت (یک نر و یک ماده) از آنها که به سن ۱ ماهگی رسیده باشند به ازاء هر ماه که از زندگی‌شان سپری شود یک جفت خرگوش متولد می‌کنند که آنها هم از همین قاعده پیروی می‌کنند حال اگر فرض کنیم این خرگوشها هرگز نمی‌میرند و در آغاز یک جفت از این نوع خرگوش در اختیار داشته باشیم که به تازگی متولد شده‌اند حساب کنید پس از n ماه چند جفت از این نوع خرگوش خواهیم داشت.»فرض کنیم xn تعداد جفت خرگوش پس از n ماه باشد، میدانیم که x۲=۱,x۱=۱، تعداد جفت خرگوشها در ماه n+۱ ام برابر خواهد بود با حاصل جمع تعداد جفت خرگوشهایی که در این ماه متولد می‌شوند با تعداد جفت خرگوشهای موجود(xn).اما چون هر جفت خرگوش که از دو ماه قبل موجود بوده هم اکنون حداقل دوماه سن خواهند داشت و به سن زادو ولد رسیده‌اند تعداد جفت خرگوش های متولد شده برابر خواهد بود با xn-۱، پس خواهیم داشت:x۱ = ۱ , x۲ = ۱ , xn + ۱ = xn + xn - ۱که اگر از قواعد مذکور پیروی کنیم به دنباله زیر خواهیم رسید که به دنباله فیبوناچی مشهور است.۱, ۱, ۲, ۳, ۵, ۸, ۱۳, ۲۱, ۳۴, ۵۵, ۸۹, ۱۴۴, ۲۳۳, ۳۷۷, ۶۱۰, ۹۸۷, ۱۵۹۷, ۲۵۸۴,…فیبوناچی با حل این مسئله از راه حل فوق دنباله حاصل را به جهان ریاضیات معرفی کرد که خواص شگفت‌انگیز و کاربردهای فراوان آن تا به امروز نه تنها نظر ریاضی‌دانان بلکه دانشمندان بسیاری از رشته‌های دیگر را به خود جلب کرده.رابطهٔ دنبالهٔ فیبوناچی به این شکل است:2: F_n=F_{n-1}+F_{n-2}" src="https://upload.wikimedia.org/math/e/d/7/ed794d0f654945713be1153997154a76.png" data-mce-src="https://upload.wikimedia.org/math/e/d/7/ed794d0f654945713be1153997154a76.png">برای مثال برای به دست آوردن جملهٔ دهم باید جملهٔ نهم (۳۴) و جملهٔ هشتم (۲۱) را با هم جمع کنیم که برابر ۵۵ می‌شود.چند فرمول برای احتساب جملهٔ nام دنبالهٔ فیبوناچی، بدون استفاده از جملات ماقبل وجود دارد.، یکی از این فرمول هاست. (فی) همان عدد طلایی است که برابر با : می‌باشد.روشهای متفاوتی برای بیان رابطه بین عدد طلایی و دنباله فیبوناچی وجود دارد که ما در اینجا به دو نمونه بسنده می‌کنیماولین مطلبی که در زمینه ارتباط با دنباله فیبوناچی قابل ذکر است به این قرار است: دنباله را بار دیگر در نظر می‌بینیم:۱۰----۹----۸----۷----۶----۵----۴----۳----۲----۱----شماره جمله۵۵----۳۴----۲۱----۱۳----۸----۵----۳----۲----۱----۱----مقدار جملهنسبت جمله دوم به اول برابر است با ۱نسبت جمله سوم به دوم برابر است با ۲نسبت جمله چهارم به سوم برابر است با ۱٫۵نسبت جمله پنجم به چهارم برابر است با ۱٫۶۶نسبت جمله ششم به پنجم برابر است با ۱٫۶نسبت جمله هفتم به ششم برابر است با ۱٫۶۲۵نسبت جمله هشتم به هفتم برابر است با ۱٫۶۱۵نسبت جمله نهم به هشتم برابر است با ۱٫۶۱۹نسبت جمله دهم به نهم برابر است با ۱٫۶۱۷به نظر می‌رسد که این رشته به عدد طلایی نزدیک می‌شود. اگر نسبت عدد چهلم این رشته را به عدد قبلی حساب کنیم به عدد ۱٫۶۱۸۰۳۳۹۸۸۷۴۹۸۹۵ می‌رسیم که با تقریب ۱۴ رقم اعشار نسبت طلایی را نشان می‌دهد. نسبت جملات متوالی به عدد طلایی میل می‌کند.معادله خطمعادلهٔ خطی به صورت y=mx در نظر می‌گیریم. m به معنی شیب خط است و یک عدد حقیقی است. می‌دانیم اگر m گنگ باشد، خط y=mx از هیچ نقطه‌ای با مختصات صحیح به جز مبدأ عبور نخواهد کرد. در واقع این خط امکان ندارد از نقطه‌ای (جز مبدأ) عبور کند که هم x و هم y آن عدد صحیح باشند. حال به جای m قرار می‌دهیم: φ. یعنی خط y=φx را در نظر می‌گیریم. چون φ هم یک عدد گنگ است، این خط از هیچ نقطه‌ای با x و y صحیح (جز مبدأ) عبور نخواهد کرد. به همین دلیل نقطه‌هایی را با x و y صحیح در نظر می‌گیریم که کمترین فاصله را از این خط دارند. ابتدا به نظر می‌رسد نقطهٔ (۱، ۱) کمترین فاصله را با این خط دارد. ولی فاصلهٔ نقطهٔ (۲، ۱) از این خط کمتر است. نقطهٔ (۳، ۲) فاصلهٔ کمتری با این خط دارد. همچنین فاصلهٔ نقطهٔ (۵، ۳) از این هم کمتر است. این نقاط به همین ترتیب ادامه خواهند یافت و در زیر چند نقطهٔ بعدی را که فاصله‌شان از این خط کمتر می‌شود را می‌بینید:...،(۵۵، ۳۴)، (۳۴، ۲۱)، (۲۱، ۱۳)، (۱۳، ۸)، (۸، ۵)، (۵، ۳)، (۳، ۲)، (۲، ۱)، (۱، ۱)صحت مطالب فوق به راحتی قابل بررسی است. با کمی دقت در مختصات این نقاط درخواهیم یافت که این مختصات از الگوی دنباله فیبوناچی پیروی می‌کنند. این نقاط را نقاط فیبوناچی می‌نامند.منابع:https://fa.wikipedia.org/wiki/%D8%A7%D8%B9%D8%AF%D8%A7%D8%AF_%D9%81%DB%8C%D8%A8%D9%88%D9%86%D8%A7%DA%86%DB%8Chttp://library.tebyan.net/film/Viewer/Text/75221/1
  • امیرحسن امیرماهانی

نظرات  (۱)

بسیار تا بسیار عالی. از زحمات شما متشکریم. این وبلاگ در خاورمیانه و بهتر بگم در کل دنیا نظیر ندارد.